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Abstract: First-passage times (FPTs) are widely used to characterize stochastic processes such as
chemical reactions, protein folding, diffusion processes or triggering a stock option. In previous

work (Suarez et al., JCTC 2014;10:2658-2667), we demonstrated a non-Markovian analysis

approach that, with a sufficient subset of history information, yields unbiased mean first-passage
times from weighted-ensemble (WE) simulations. The estimation of the distribution of the first-pas-

sage times is, however, a more ambitious goal since it cannot be obtained by direct observation in

WE trajectories. Likewise, a large number of events would be required to make a good estimation
of the distribution from a regular “brute force” simulation. Here, we show how the previously devel-

oped non-Markovian analysis can generate approximate, but highly accurate, FPT distributions

from WE data. The analysis can also be applied to any other unbiased trajectories, such as from
standard molecular dynamics simulations. The present study employs a range of systems with

independent verification of the distributions to demonstrate the success and limitations of the

approach. By comparison to a standard Markov analysis, the non-Markovian approach is less sen-
sitive to the user-defined discretization of configuration space.
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Introduction
The first-passage problem occupies a prominent

place in the natural sciences, as the first-passage

time (FPT) is a key characterization of the kinetics

of any process. The FPT has received attention in

many areas of physics and applied mathematics,1–5

chemistry,6–8 protein folding,9–12 and even credit-

risk modeling.3

In the study of protein folding, the timescales

accessible by molecular dynamics (MD) simulations

are still in the hundreds of microseconds, and in the

better cases, in the millisecond range,13 while the

experimentally observed protein-folding timescales

often lie between a few milliseconds to minutes.14 In

this scenario, the computation of the FPTs is a real

challenge, as even the mean FPT (MFPT) requires

at least 10 events to be statistically robust. The FPT

distribution (FPTD), which provides a key descrip-

tion of the fluctuations in kinetic behavior, could

require hundreds of events, and is clearly prohibi-

tive for many biological systems of interest using

standard simulations.

The challenge of simulating sufficiently long

timescales in molecular systems has motivated a

wide range of approaches.15–18 One prominent

approach is Markov state modeling,19–23 where the

phase space is divided into regions or states which

are kinetically and/or structurally related. The tra-

jectory is then mapped every s (the lag time) onto

those regions and the sequence of states generated
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is considered as a discrete-time Markov chain. The

model is characterized by its transition matrix KðsÞ
from which equilibrium and non-equilibrium proper-

ties can be calculated analytically once a suitable

lag time is estimated.

Path-sampling approaches also attempt to

extract long-timescale information without bias.

Transition path sampling (TPS) methods sample

directly the path ensemble between two states using

a Monte Carlo procedure.24–27 A variation of TPS,

transition interface sampling, divides the transition

region into subregions using interfaces, and the

transition probabilities between neighboring interfa-

ces is used to evaluate the rate constant.28,29 A simi-

lar approach is followed by the forward flux

sampling method.30,31 The milestoning method typi-

cally partitions the space into smaller regions (in

this case, cells) by dividing hypersurfaces to extract

kinetic observables based on short trajectories,32,33

as does nonequilibrium umbrella sampling.34

The weighted ensemble (WE) path-sampling

approach35–43 is the primary focus of the present work.

WE divides configuration space into regions called bins

and attempts to sample an ensemble of trajectories

that is relatively uniform among bins. WE is statisti-

cally rigorous,35,36 and any average property can be

estimated in a straightforward manner, in analogy to

averaging behavior in ordinary simulations.37 Never-

theless, the distribution of the FPTs cannot be

obtained by direct observation in WE trajectories.

Here, we show that a non-Markovian analysis we

previously proposed37 can also be used to estimate dis-

tributions of the FPT from WE simulations. This anal-

ysis maps continuous trajectories onto discrete states

(bins) with history information and is not limited to

WE simulations. It can also be applied to postanalyze

any other unbiased trajectories generated in other

approaches including regular single-trajectory

simulations.

A potential advantage of non-Markovian analy-

sis compared with standard Markov modeling is

that states (bins) can be more coarsely defined. True

Markovian behavior requires, in general, fairly

small states such that intrastate relaxation is

extremely fast,44 in turn requiring a substantial tra-

jectory set for accurate estimation of interbin transi-

tion rates.44–46 When the Markovian assumption is

relaxed, larger states can be used so long as suffi-

cient history is retained.37,47 Put another way, with

finite trajectory data necessitating larger states in

rate-estimation schemes, there appears to be great

potential in using the additional history information

that typically is present in trajectory segments, but

discarded in standard Markov analysis.

It is important to note that a first-passage pro-

cess, by definition, is unidirectional (from initial to

target state) and hence does not reflect equilibrium

behavior (see Fig. 1). A focus on the subset of perti-

nent trajectories is equivalent to using non-

Markovian history information regarding whether a

trajectory originated from the chosen initial state.

In this work, we calculate the FPTD for several

models. We start with a simple toy model that can be

exhaustively sampled, and next study alanine tetra-

peptide (Ala4) in GB/SA implicit solvent, which is also

amenable to good sampling. We then focus on both

the molecular association and dissociation processes

in explicit solvent of two systems: methane/methane

and Na1/Cl2. Finally, we explore the conditions under

which the non-Markovian analysis can be performed.

Theoretical Formulation

WE simulation

As background, consider a regular “brute force” (BF)

simulation of a single trajectory where the observ-

ables that we want to estimate are time averaged.

In this case, every single “observation” (snapshot)

has the same statistical weight. A similar approach

would be to perform n independent BF simulations,

with each simulation having a weight 1=n. Both

strategies will yield the same results with sufficient

simulation time.

A WE simulation uses multiple weighted simul-

taneous trajectories,35,36 with weights that sum to

one. In WE, however, the number of trajectories and

their weights are dynamically and rigorously

changed on the fly, following two rules:

� A single trajectory can be “split”—i.e., replicated—

into two or or more trajectories as long as the sum

of the weights is conserved. Each “child” trajectory

inherits an equal share of the parent’s weight.

Figure 1. First-passage processes are unidirectional. This

schematic shows a long “equilibrium” trajectory transitioning

between arbitrary states A and B, with red A-to-B segments

representing the first-passage process of interest. Impor-

tantly, the kinetics of transitions between substates or bins

(e.g., i and j) relevant to the FPT differ from what would be

inferred if all trajectories (both red and blue) were included. In

the subset of red trajectories, trajectories in bin i are more

likely to have originated from the left, compared with the full

set of trajectories. Modified from Ref. [66].
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� Two or more trajectories can be “merged” into a

single trajectory in such a way that the current

state and history of the resulting “child” trajectory

will be chosen stochastically from one of the origi-

nal trajectories in proportion to their weights. In

other words, one or more parent trajectories is

pruned. The surviving “child” trajectory inherits

the sum of the weight of the parents, which con-

serves probability.

The above two rules, by themselves, do not

enhance sampling. The key advantage of WE comes

when the phase space is divided in regions or bins

and the trajectories are examined every s (lag time):

when one or more trajectories enters an unoccupied

bin, those trajectories are replicated so that their

count conforms to a (typically) preset value, M. In

this manner, the sampling of new regions of the

phase space is enhanced (see Fig. 2). Alternatively, if

more than M trajectories are found to occupy a bin,

trajectories are combined statistically following the

second rule; in this way, the amount of sampling is

controlled. The procedures of replication and/or com-

bination are followed every s, and their statistical

nature as a resampling procedure ensures the

dynamics remain unbiased.36

In this study, WE simulations employ static bins

(see below). However, dynamic binning strategies

are also possible, such as using Voronoi cells48 or a

“string” approach.49

Post analysis of WE simulation data. Although

WE simulations can directly generate estimates of

observables by calculating sums of weights and flows

of weights37–39, here we estimate observables indi-

rectly using a “post analysis” of simulation data.37

Conditional transition probabilities are obtained and

processed via the Markovian and non-Markovian

analyses described below.

Markovian calculation of FPTs
A regular Markov analysis will be performed for ref-

erence in all of the systems. Here, by construction,

there is no history information and the rates kij

between two bins are defined by the single-step con-

ditional probability

kij ¼ PfXt1s ¼ jjXt ¼ ig; (1)

where Xt is the random variable representing the

state of the system at time t, and s is the lag-time

used for the Markov model. In practice, the rates

among bins are estimated as in Ref. 37 using

k̂ij ¼ hxiji2=hxii; (2)

where xij is the probability flux transferred after

the lag-time s from bin i to bin j, and xi the popula-

tion in i before s. The subscript “2” indicates that

the rate is considered nonzero only when at least

two transitions are observed, to reduce noise.37

Notice that for a BF trajectory Eq. (2) is equivalent

to k̂ij ¼ hciji2=hcii, where fcijg is the count matrix,

i.e., the number of transitions observed from i to j,

and ci ¼
X

j
cij.

The FPT is a random variable and the probabil-

ity distribution associated with it in the discrete bin

space is derived from the transition matrix of the

process K ¼ fkijg. Let f
ðnÞ
ij denote the probability

that the FPT from state i to j is equal to ns. Then

f
ð1Þ
ij ¼ kij since by definition, kij is the probability

that the transition i! j occurs in one s. The f
ð2Þ
ij val-

ues can be derived from f
ð1Þ
ij , since the “path” has to

go through a third bin m 6¼ j (otherwise n would be

1), and the transitions to m take place with probabil-

ity kim, so f
ð2Þ
ij ¼

X
m6¼j

kimf
ð1Þ
ij . Similarly, for any

n> 1, we can derive f
ðnÞ
ij from f

ðn21Þ
ij , and in general,

the following recursive formula is satisfied50

Figure 2. Basic WE protocol [42]. The two-dimensional con-

figurational space is divided into bins (lower left panel), with a

target of M 5 3 trajectories per bin. During each iteration, the

trajectories are propagated for a time s as shown for iteration

N in (A). After iteration N, the trajectories are examined and

replicated to keep 3 trajectories in every occupied bin, then

the trajectories are propagated again for an interval s in itera-

tion N 1 1 (orange paths in B). After iteration N 1 1, one of

the bins contains more than the target number of trajectories.

In this case, one of the trajectories is terminated (dashed

path in C), and its weight is assigned statistically to the

remaining trajectories in the bin. Reprinted (adapted) with

permission from Ref. [42]. Copyright 2015, American Chemi-

cal Society.
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f
ðnÞ
ij ¼

kij for n ¼ 1X
m6¼j

kimf
ðn21Þ
mj for n ¼ 2;3; :::

8><
>: (3)

Non-Markovian calculation of FPTs

A first-passage process, by definition, is unidirec-

tional (e.g., from state A to state B), which has

important consequences for estimating FPTs without

bias. Most notably, as illustrated in Figure 1, the

bin-to-bin transition probabilities should be based

only on the pertinent subset of trajectories (e.g., A to

B) rather than the full equilibrium set. Using such a

subset of trajectories in the analysis is implicitly a

non-Markovian analysis37,39 because it depends on

the last state visited (A or B).

The mathematical formalism in the non-

Markovian analysis is similar to the regular Markov

analysis shown in the previous section, but the

history-labeling requires generalized expressions for

populations and rates. Assume we have defined two

nonoverlapping “macroscopic” states A and B, which

may encompass only a small portion of the full

phase space. Every segment of a sufficiently long

trajectory is given a label l according to whether the

system was last in state A (the label a) or state B

(label b). Then the total bin population pi is decom-

posed into two parts,

pi ¼ pa
i 1pb

i : (4)

For rates, the main difference from the Markov

formulation is that there are two additional labels l
and m in the transition rates klm

ij .37 After a transition,

the label can change if that transition implies an

“event”, i.e., a trajectory which was most recently in

A (a trajectory) enters B or vice versa; thus, we use

a second label m to specify which label applies (a or

b) after s. Formally, the labeled rate definition is

given by

klm
ij ¼ PfXt1s ¼ j;Lt1s ¼ mjXt ¼ i; Lt ¼ lg l; m ¼ a;b

(5)

where Lt and Lt1s account for the label of the trajec-

tory (a or b) before and after s, respectively.

Figure 3 shows the transformation that a regular

Markov model with three bins would undergo to

include the relevant history information. For each

unlabeled rate kij, four history labeled elements klm
ij

have to be considered.37 Without loss of generality, we

consider that the states A and B are defined by single

bins, since it is always possible to adapt the bin boun-

daries to the definition of the states. Note that, even

though the labels l and m are not completely inde-

pendent of the bin indexes, they only store history-

related information, and each of them can only have

two possible values (a or b), in contrast to the bin

index i 2 f1; :::;Ng, where N is the number of bins.

More than half of the elements of the matrix are

zero by construction: an a trajectory cannot be trans-

formed into a b trajectory outside B, for instance. We

can also see “forbidden bins” in the extended scheme:

the labeled bin i is forbidden when a column and a

row with the same index i are both zero, since we

cannot have an a trajectory inside B or vice versa. All

the unnecessary rows and columns are suppressed

before any algebraic manipulation.

If N is the number of bins, the 2N32N matrix

K (see Fig. 3 right) has all the necessary information

to estimate any property of interest. For example,

under the steady state condition

KTpl ¼ pl (6)

the unlabeled (pi) and labeled (pl
i ) bin populations can

be obtained: see Eq. (4). The matrix K also permits cal-

culation of the MFPTs, and the distribution of the FPTs.

If we are only interested in FPTs, it is easier to

manipulate two smaller matrices Ka and Kb where

we store the relevant rates for the A! B and B! A

FPTs, respectively. In our 3-bin example in Figure 3

these matrices are

Ka ¼
kaa

11 kaa
12 kab

13

kaa
21 kaa

22 kab
23

0 0 1

2
664

3
775 and Kb ¼

1 0 0

kba
21 kbb

22 kbb
23

kba
31 kbb

32 kbb
33

2
664

3
775;
(7)

which preserves the same kinetics represented by

the full K matrix. The distributions are obtained

from Ka and Kb using the same recursive approach

of Eq. (3) except with labeled rates:

Figure 3. Modified from Ref. [37]. Constructing a history-

labeled rate matrix for a system with three bins. Here, state A

consists solely of bin 1 and state B solely of bin 3. Left: A tra-

ditional rate matrix without history information. Right: The

labeled rate matrix accounting for which state was visited

most recently. The element klm
ij is the conditional probability

for the i to j transition for trajectories initially in the l suben-

semble (either a or b) and ending in the m (a or b)

subensemble.
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f
ðnÞ
ij ¼

klm
ij for n ¼ 1X

m6¼j

klm
imf
ðn21Þ
mj for n ¼ 2;3; :::

l; m ¼ a; b

8><
>:

(8)

All non-Markovian FPTDs are calculated from

this approach, with rates defined in Eq. (5).

States defined by multiple bins. The recursion

formula in Eq. (8) is defined only for the case when the

initial and target states are single bins, but that is not

a generally applicable formulation. Here, we consider

the more general case, when the states A or B are

defined by more than one bin and the recursion for-

mula can not be applied directly. To calculate the

FPTs, e.g., from A to B (a trajectories), we can “merge”,

for simplicity, all the bins in B without affecting the

FPT. The rates to that single bin with index b from any

other bin i 62 B are computed as the sum

kab
ib ¼

X
j2B

kab
ij : (9)

Furthermore, in Ka the rows with index i 2 B,

are all eliminated except for one, and since B is

defined as absorbing in Ka, then kbb 5 1 and the rest

of the elements in the same row will be zero.

The FPTs depend not only on the definitions of

A and B, but also on how the trajectories are started

in A. As in Figure 1, consider a single, long trajec-

tory BF simulation where multiple events from A to

B and from B to A are observed and from which we

want to estimate the FPTs. When the trajectory

coming from B enters A, the chronometer is

restarted and we start counting the time that the

trajectory spends before it hits B again, and the

time measured will be the FPT (A ! B). That is,

with time-continuous trajectories, we would have to

restart the chronometer at the surface of A –just

when the b trajectory hits A for first time. With suf-

ficient sampling, we would be able to “see” the dis-

tribution of the trajectories coming from B on the

surface of A. Using the incoming distribution of tra-

jectories reaching the A surface to start simulations

in A, we would obtain, on average, the same FPTs

(A!B) observed in the continuous BF trajectory.51

The description of space/time-continuous trajec-

tories coming from A that hit the surfaces of B and

vice versa (Fig. 1) has to be “translated” to the case

of discrete trajectories, since in practice, we have

time- and space-discrete trajectories, and there is no

explicit notion of the surface of A. To replicate the

same results observed in BF after mapping the tra-

jectory into the discrete bin space, it is sufficient to

start the a trajectories following the discretized dis-

tribution of entry points, i.e., the trajectories are

started in every bin j 2 A with probability equal to

PaðjÞ ¼

X
i62A

pb
i kba

ijX
j2A

X
i62A

pb
i kba

ij

; (10)

where pb
i are the b populations obtained from solv-

ing the steady-state condition for the labeled matrix

K [Eq. (6)]. Then, the MFPT(A! B) can be com-

puted as the weighted average

MFPTðA! BÞ ¼
X
j2A

PaðjÞMFPT ðj! BÞ; (11)

and the FPT distribution is obtained based on the proba-

bility f
ðnÞ
AB of observing FPT(A! B)¼ ns evaluated as

f
ðnÞ
AB ¼

X
j2A

PaðjÞ f ðnÞjB : (12)

Since B has been redefined as a single bin, f
ðnÞ
jB

is calculated from Eq. (8). Analogously, f
ðnÞ
BA can be

obtained following the same protocol.

Model Systems and Simulation Details

In this section, we describe the simulation protocols

used for each model system. All simulations were

carried out using the open-source highly scalable

WESTPA software package (https://westpa.github.io/

westpa),42 an implementation of the WE algorithm.

WESTPA has been designed to conveniently inter-

face with any stochastic dynamics engine, such as

GROMACS,52 OpenMM,53 AMBER,54 or with Monte

Carlo software.37–39

Toy model

We examined a one-dimensional toy model first to

enable exhaustive reference sampling. The land-

scape of Figure 4 was sampled using Monte Carlo

(MC) as the effective dynamics. The energy function

is given by

Figure 4. One-dimensional toy model. The figure shows the

definition of the states A and B and the partition of the space

in bins is indicated with dashed lines.
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E1DðxÞ=kBT ¼
sinðxÞ12:5cosð4xÞ10:0008x420:11ðx20:5Þ2 if 214 < x < 14

1 otherwise

(
(13)

The trial move dx was chosen randomly in the

interval ½2p=2;p=2� with uniform probability

distribution.

For the WE simulation, the space is divided into

10 bins, most of them of width p, except for the first

and last bin that are formally infinite–defined by

the intervals ð21;24pÞ and ½4p;11Þ. Two states A

and B were defined as shown in Figure 4, the state

A is constituted by the first three bins ðx < 2pÞ while

state B by the last four bins ðx � pÞ. The WE simula-

tion was run for a total of 33104 iterations with a

maximum of 10 trajectory walkers per bin. The lag-

time used was s ¼ 5 MC steps for both WE and the

postanalysis.

Alanine tetrapeptide (Ala4)

For Ala4, the WE simulation was performed using

the WESTPA software interfaced with the AMBER

11 software package,54 all-atom AMBER ff99SB

force-field,55 and GB/SA implicit solvent. No cutoff

was used for the evaluation of nonbonded interac-

tions. The Hawkins, Cramer, Truhlar56,57 pairwise

generalized Born model is used, with parameters

described by Tsui and Case58 (option igb 5 1 in

AMBER 11 input file). To maintain the temperature

at 300 K, a Langevin thermostat59 was applied

throughout the simulations with a collision fre-

quency of 5:0ps-1.

To run the WE simulation, a two-dimensional

progress coordinate was “binned” using 10 3 10 parti-

tions following our previous work.37 A dihedral dis-

tance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i
d2

i

q
2 ½0; 180� with respect to a

reference set of torsions is used in the first dimension,

where N is the number of torsional angles considered

and di is the circular distance between the current

value of the i-th angle and our reference, i.e., the

smaller of the two arc lengths along the circumfer-

ence. This dimension was divided every 14
�

from 0 to

126
�

and then a final partition covering the interval

ð126
�
;180

� �. In the second dimension, we used the

heavy-atom RMSD with respect to an a-helical struc-

ture.37 In this case, the space was divided every 0.4 Å

from 0 to 3.6 Å and then a final partition covering the

space ½3:6;11Þ. The same partition of the space used

for the WE simulation was used for the postanalysis.

In the two-dimensional space A is defined by the set f
56

� � D < 84
�g \ f0 � RMSD < 0:8g and B ¼ f

56
� � D < 84

�g \ f3:2 � RMSD < 11g. The WE sim-

ulation was run for a total of 4600 iterations with a

maximum of 5 trajectory walkers per bin. A lag-time

of s ¼ 5ps was used for both WE and the postanalysis.

Methane/methane and Na1/Cl2

We simulated both the molecular association and

dissociation processes of the methane/methane and

Na1/Cl2 systems in explicit solvent. For both sys-

tems, dynamics were propagated using the GRO-

MACS 4.6.3 software package52 as in previous

work.60 Briefly, the solute molecules, which were

represented using the united-atom GROMOS 45a3

force field,61 were immersed in dodecahedral boxes

of SPC/E62 explicit water molecules that accommo-

date the unbound states (see below) with a mini-

mum solute-wall distance of 12 Å. Simulations were

run in the NVT ensemble maintaining the tempera-

ture at 300 K using a weak Langevin thermostat59

(coupling time of 1.0 ps). Van der Waals interactions

were switched off smoothly between 8 and 9 Å. Real-

space electrostatic interactions were truncated at

10Å; long range electrostatic interactions were calcu-

lated using particle mesh Ewald summation63 and

periodic boundary conditions. To enable a 2 fs time-

step, bonds to hydrogen atoms were constrained to

their equilibrium values using the LINCS

algorithm.64

WE simulations were performed following estab-

lished protocols.37 For both methane/methane and

Na1/Cl2 systems, the simulations were started

from 50 well-equilibrated, bound-state conformations

(state A), which were defined as having center-to-

center distances of< 4.0 (methane/methane) Å

and<2.80 Å (Na1/Cl2). The unbound state (state

B) was defined as having center-to-center distances

of � 11.0 Å (methane/methane) and � 14.98 Å (Na1/

Cl2). For each system, the 50 starting conforma-

tions in the bound state were selected according to

their statistical weights from the final iteration of a

separate WE simulation in which the ensemble of

bound-state conformations, including solvent config-

urations, was extensively sampled. All WE parame-

ters are the same as those used in Ref. 60 (e.g., s
values, progress coordinates, bin spacings, etc.) with

the exception that once the target state was reached,

the trajectories were not “recycled” as new simula-

tions starting from the initial state. Thus, instead of

maintaining steady state conditions, as done in the

original WE algorithm,35 an equilibrium set of tra-

jectories was generated that could be decomposed

into two steady states.37 The s values were set to 0.5
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and 5 ps for the methane/methane and Na1/Cl2 sys-

tems, respectively. Both systems were run for a total

of 2000 s intervals (or “iterations”) using a progress

coordinate consisting of the center-to-center distance

between the solute molecules; this progress coordi-

nate was divided up into bins with 50 trajectory

walkers per bin. For the methane/methane system,

the progress coordinate was divided into 10 bins,

resulting in a maximum of 500 trajectory walkers

per bin. For the Na1/Cl2 system, the progress coor-

dinate was divided into 21 bins, resulting in a maxi-

mum of 1050 trajectory walkers. The total wall-clock

time invested for the WE simulations of the meth-

ane/methane and Na1/Cl2 systems was 33 hours

using 250 CPU cores and 4 days using 320 CPU

cores, respectively, on 2.3 GHz AMD Interlagos

processors.

Results

We present our data with two primary goals in

mind: (i) to show that the FPT distribution (FPTD)

can be obtained from WE simulation; and (ii) to

determine whether non-Markovian analysis

improves estimation of the FPTD compared with

standard Markov analysis for the types of bins typi-

cally used in WE simulation. We also wish to show

(iii) that the non-Markovian analysis can be applied

directly to standard (e.g., ordinary MD) simulation

and (iv) to demonstrate the conditions under which

the approach breaks down.

Non-Markovian analysis of WE simulations
In every case, the FPT distribution estimated from

postanalysis of WE simulation is compared with ref-

erence data from extensive, brute-force MDs simula-

tions, generated under the same conditions as the

trajectory segments employed for WE. See Methods

section for details. To generate the reference distri-

bution and confidence intervals, a histogram was

constructed and the bin counts were analyzed via

multinomial statistics to yield error bars for a 95%

confidence interval. The histograms were rescaled

for comparison with the FPT probability densities

generated via WE and matrix analysis.

The primary results are presented in Figures 5

(toy model), 6 (Ala4), 7 (methane/methane), and 8

(Na1/Cl2). The plots show the reference (Long MD)

data compared with WE results postanalyzed using

either a standard Markov approach (Markov) or the

non-Markovian matrix (Non-Markovian). In all of

Figure 5. Non-Markovian estimation of the the FPT distribution in a toy model from WE data. FPT distributions of the one-

dimensional toy model from A to B (left plot) and from B to A (right) are obtained by post-analyzing a WE simulation using a

regular first-order Markov analysis (Markov) and non-Markovian analysis (Non-Markovian). The results are compared with a ref-

erence long MC simulation and error bars indicating a 95% confidence interval.

Figure 6. Non-Markovian estimation of the the FPT distribution in the Ala4 peptide from WE data. FPTDs of the Ala4 system

from A to B (left plot) and from B to A (right) were obtained by postanalyzing a WE simulation using a regular first-order Markov

analysis (Markov) and non-Markovian analysis (Non-Markovian). The results are compared with a reference long MD simulation

and error bars indicating a 95% confidence interval.
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the systems, the non-Markovian analysis agrees

with the reference confidence interval and generally

performs better than a standard Markov analysis.

Reference data were provided by independent

long simulations. For the toy system, 108 steps of

Monte Carlo simulation were used. For Ala4, the

reference simulation was about 3 ls of MD, in which

1038 events (i.e., A! B and B! A transitions)

were observed. For methane/methane and Na1/

Cl2; 1:0 ls of MD simulation was performed which

yielded around 1200 and 1600 events, respectively.

Non-Markovian analysis of standard MD

simulations

Although our non-Markovian approach was devel-

oped for WE simulations, the theory underpinning

the analysis is very general and not specific to WE.

We therefore sought to confirm that the non-

Markovian analysis could be useful for analyzing

ordinary “BF” (e.g., standard MD) trajectories.

Figures 9 and 10 show that the FPT distribution

can be obtained to good accuracy by post-analyzing

standard MD trajectories. In each case, the figure

compares matrix estimates from both Markovian

and non-Markovian analysis obtained from a very

long MD trajectory exhibiting more than 1000

events, as well as the direct measurement obtained

by histogramming the FPTs (Long MD). In addition,

and perhaps of greater interest, the figures also

show that non-Markovian analysis can produce a

good estimate for the full FPT distribution even

from a fraction of the original MD trajectory using

only 30 events [Non-Markovian/(30 events)]. Note

that generating a distribution by histogramming a

standard trajectory would require many counts in

each bin for statistical reliability.

Limitations of the approximation
Although the non-Markovian analysis is unbiased

for the mean FPT, it is not constructed to yield the

exact distribution. We empirically examined the con-

ditions under which the approach would fail for

characterizing the full distribution, and found that

in general the approach breaks down in the limit

when A [ B covers the whole space or nearly so,

when the intermediate region is very small. This is

not totally unexpected since, despite the remarkable

fact that the MFPT can be estimated without bias

Figure 7. Non-Markovian estimation of the the FPT distribution of the methane/methane system from WE data. FPTDs of the

methane/methane system from A to B (left plot) and from B to A (right) were obtained by post-analysing a WE simulation using

a regular first-order Markov analysis (Markov) and non-Markovian analysis (Non-Markovian). The results are compared with a

reference long MD simulation and error bars indicating a 95% confidence interval.

Figure 8. Non-Markovian estimation of the the FPT distribution of the Na1/Cl2 system from WE data. FPTDs of the Na1/Cl2

system from A to B (left plot) and from B to A (right) were obtained by postanalyzing a WE simulation using a regular first-order

Markov analysis (Markov) and non-Markovian analysis (Non-Markovian). The results are compared with a reference long MD

simulation and error bars indicating a 95% confidence interval.
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with even a single intermediate bin, the description

given by the non-Markovian model of the dynamics

inside the states (A and B) is still purely Markovian.

Figure 11 is an example of that situation for our

one-dimensional toy model where A ¼ fx < 2pg and

B ¼ fx � 0g; the intermediate region is a single bin

and there is no appreciable difference between

“Markov” and “Non-Markovian.” In this limit of a

single-bin intermediate, both Markovian and non-

Markovian analyses tend to fail and yield similar

results, since in effect the non-Markovian approach

embodies little additional history information com-

pared with the Markov model: see Figure 1.

Discussion

The results presented above indicate that our previ-

ously developed non-Markovian analysis37 can use-

fully be applied to estimating FPT distributions

based on weighted-ensemble (WE) and even ordinary

MD simulations. WE simulations do not directly yield

the FPT distribution, and straightforward MD would

require an impractical amount of simulation to allow

the distribution to be resolved, so our approach may

have significant utility in the analysis of simulations.

The method is fairly successful even when rather

crude bins or states are used.

The FPT distribution can provide insights into

kinetic behavior not available from the mean FPT.

Most obviously, as seen in some of the distributions,

significant deviations from simple exponential

behavior reveal the complexity of true molecular

landscapes in contrast to idealized pictures. For

example, the finite event duration—i.e., the time for

a transition even excluding the dwell time in the ini-

tial state A65—essentially forces the FPT distribu-

tion to have a low-probability transient at small

values of the FPT. In systems, more complex than

those examined here, such as with multiple signifi-

cant metastable intermediates, the FPT distribution

could exhibit further features of interest.

This work was motivated by the observation

that a non-Markovian analysis based solely on the

most-recent-state history yields the mean FPT with-

out bias.37,66 Although the extension of the approach

to estimating the FPT distribution is approximate,

it seems reasonable that the inclusion of history

information could significantly improve calculation

of the distribution. By definition, all trajectory gen-

erating methods (such as MD simulations) include

at least some history information—although that

history does not seem to be exploited in common

analyses.

Figure 9. Non-Markovian analysis of standard MD data. FPTDs of the Ala4 system from A to B (left plot) and from B to A (right)

were obtained by postanalyzing a very long MD simulation. Also shown is the non-Markovian analysis of a much shorter trajec-

tory where only 30 events (A! B and B! A) are observed. The results are compared with a reference long MD simulation and

error bars indicating a 95% confidence interval.

Figure 10. Non-Markovian analysis of standard MD data. FPTDs of the methane/methane system from A to B (left plot) and

from B to A (right) were obtained by postanalyzing a very long MD simulation. Also shown is the non-Markovian analysis of a

much shorter trajectory where only 30 events (A! B and B! A) are observed. The results are compared with a reference long

MD simulation and error bars indicating a 95% confidence interval.
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We emphasize that in projections of continuum

behavior to finite states, kinetic behavior is gener-

ally expected to be non-Markovian for the simple

reason that relaxation within a finite state is never

infinitely fast—nor will there generally be a clean

separation of fast and slow timescales. For example,

in the projection of a continuous process to quasi-

one-dimensional discrete states (see Fig. 1), the

probability to transition from one finite state to the

neighboring state on the left, say, will depend on

whether the (continuous) trajectory arrived from the

left or right. This is a non-Markovian history effect.

In principle, a standard Markov analysis can

also yield the FPT distribution, but that approach

requires carefully chosen and relatively small states.

Our goal, by contrast, was to examine larger, non-

Markovian states by construction. The advantage of

the non-Markovian approach employed here seems

to be its relative insensitivity to the division of con-

figuration space into states (or “bins”) and its evi-

dent accuracy in cases where states are relatively

large and non-Markovian, as they were in our study.

The motivation for the non-Markovian approach is

the expectation that computing-power limitations

will prevent the collection of trajectory data suffi-

cient for truly Markovian (i.e., small) states in many

highly complex systems of interest. Nevertheless, we

emphasize that Markov modeling has been shown to

yield good results for long timescales in cases where

sufficient trajectory data is available.19,67

The FPT distribution estimates here are approx-

imate. We find, fortunately, that the approach is

quite accurate for reasonable definitions of states

and intermediate regions. Our data suggest that the

approximation breaks down when a small intermedi-

ate region is used, i.e., when the whole space is sub-

stantially covered by the states A and B. In that

limit, the dynamics inside the states A and B essen-

tially determines the FPTD, and our non-Markovian

model, which remains equivalent to the Markov

model inside A and B by construction in our analysis

(see Fig. 1), cannot improve our estimates.

Because the non-Markovian analysis is capable

of yielding accurate FPT distributions based on

fairly crude divisions of configuration space, we

anticipate it could be a very useful tool in analyzing

not only WE simulations, but also much more com-

mon ordinary MD trajectory data. The initial data

presented here analyzing standard MD trajectories

support this. The approach should be applicable so

long as unbiased raw trajectory data is used to gen-

erate the non-Markovian transition matrix elements.

That is, as with standard Markov state modeling,

trajectories should not be subject to artificial forces,

but they may be distributed in configuration space

using a variety of creative algorithms.

Conclusions

We showed that a non-Markov analysis previously

developed for unbiased estimation of the mean

FPT37 could be extended to provide good, but

approximate, characterizations of the full distribu-

tion of FPTs in WE simulation. Standard WE simu-

lations and analysis were not able to provide

estimates for the FPT distribution before now, to our

knowledge. The non-Markovian approach could

prove valuable in characterizing fluctuations in

kinetics and mechanisms generated not only by WE

simulation, but also by other methods: the analysis

is fully applicable to unbiased trajectories generated

by any means.

The non-Markovian analysis appears capable of

providing good results even when the partitioning of

configuration space is fairly crude and the states are

highly non-Markovian. In future work, we hope to

explore whether the use of such bins will enable

Figure 11. Breakdown of the non-Markovian analysis for a minimal intermediate region. FPTDs of the one-dimesional toy model

from A to B with a small intermediate region, see text, were obtained by postanalyzing a WE simulation using a regular first-

order Markov analysis (Markov) and non-Markovian analysis (Non-Markovian). The results are compared with a reference long

MD simulation and error bars indicating a 95% confidence interval. The inset shows the same distribution in the interval ½0; 303

103� MC steps.
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estimation of kinetic and mechanistic properties

using less trajectory data than is required using

finer bins.
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